The Bi-carleson Operator

نویسنده

  • CHRISTOPH THIELE
چکیده

We prove L estimates (Theorem 1.3) for the Bi-Carleson operator defined below. The methods used are essentially based on the treatment of the Walsh analogue of the operator in the prequel [11] of this paper, but with additional technicalities due to the fact that in the Fourier model one cannot obtain perfect localization in both space and frequency.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Bi-carleson Operator I. the Walsh Case

We prove L estimates for the Walsh model of the maximal bi-Carleson operator defined below. The corresponding estimates for the Fourier model will be obtained in the sequel [20] of this paper.

متن کامل

A New Twist on the Carleson Operator

Must the Fourier series of an L function converge pointwise almost everywhere? In the 1960’s, Carleson answered this question in the affirmative, by studying a particular type of maximal singular integral operator, which has since become known as a Carleson operator. In the past 40 years, a number of important results have been proved for generalizations of the original Carleson operator. In th...

متن کامل

The (weak-l2) Boundedness of the Quadratic Carleson Operator

We prove that the generalized Carleson operator with polynomial phase function of degree two is of weak type (2,2). For this, we introduce a new approach to the time-frequency analysis of the quadratic phase.

متن کامل

Certain subclasses of bi-univalent functions associated with the Aghalary-Ebadian-Wang operator

In this paper, we introduce and investigate two new subclasses of the functions class $ Sigma $ of bi-univalent functions defined in the open unit disk, which are associated with the Aghalary-Ebadian-Wang operator. We  estimate the coefficients $|a_{2} |$ and  $|a_{3} |$ for functions in these new subclasses. Several  consequences of the result are also pointed out.

متن کامل

Carleson Measures on Dirichlet-type Spaces

We show that a maximal inequality holds for the non-tangential maximal operator on Dirichlet spaces with harmonic weights on the open unit disc. We then investigate two notions of Carleson measures on these spaces and use the maximal inequality to give characterizations of the Carleson measures in terms of an associated capacity.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005